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4. Balancing of Rotating Masses 

4.1 Introduction 

The high speed of engines and other machines is a common phenomenon now-

a-days. It is, therefore, very essential that all the rotating and reciprocating parts 

should be completely balanced as far as possible. If these parts are not properly 

balanced, the dynamic forces are set up. These forces not only increase the loads 

on bearings and stresses in the various members, but also produce unpleasant and 

even dangerous vibrations. In this chapter we shall discuss the balancing of 

unbalanced forces caused by rotating masses, in order to minimize pressure on 

the main bearings when an engine is running. 

4.2 Balancing of Rotating Masses 

The balancing of rotating bodies is important to avoid vibrations. In heavy 

industrial machines such as steam turbines and electric generators, vibration 

could cause catastrophic failure. Vibrations are noisy and uncomfortable and 

when a car wheel is out of balance, the ride is quite unpleasant. In the case of a 

simple wheel, balancing simply involves moving the center of gravity to the 

center of rotation but as we shall see. for longer and more complex bodies, there 

is more to it. For a body to be completely balanced it must have two things. 

1. Static Balance. This occurs when there is no resultant centrifugal force and the 

center of gravity is on the axis of rotation. 

2. Dynamic Balance. This occurs when there is no resulting turning moment 

alone the axis. 

4.3 Balancing in one plane 

If the system is a simple disc then static balance is all that is needed. Consider 

a thin disc or wheel on which the center of gravity is not the same as the center 

of rotation. A simple test for static balance is to place the wheel in frictionless 

bearings. The center of gravity will always come to rest below the center of 

rotation (like a pendulum). If it is balanced it will remain stationary no matter 

which position it is turned to. 
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If the center of gravity is distance r from the center of rotation then when it 

spins at ω rad/s. centrifugal force is produced. This has a formula 

𝐹𝐶 = 𝑚 ∙ 𝜔
2 ∙  𝑟 

where m is the mass of the disc. This is the out of balance force. In order to 

cancel it out an equal and opposite force is needed. This is simply done by 

adding a mass m2 at a radius r2 as shown. The two forces must have the same 

magnitudes. 

 

𝑚 ∙ 𝜔2 ∙ 𝑟 = 𝑚2∙𝜔
2 ∙ 𝑟2 𝑜𝑟 𝑚 ∙ 𝑟 = 𝑚2∙ ∙ 𝑟2 

Placing a suitable mass at a suitable radius moves the center of gravity to the 

center of rotation. This balance holds true at all speeds down to zero hence it is 

balanced so long as the products of m and r are equal and opposite. 

Now consider that our disc is out of balance because there are three masses 

attached to it as shown. The 3 masses are said to be coplanar and they rotate 

about a common centre. 
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The centrifugal force acting on each mass is 

𝐹𝐶 = 𝑚 ∙ 𝜔
2 ∙  𝑟 

The radius of rotation is r and the angular velocity is ω in radians/second. The 

force acting on each one is hence: 

𝐹1 = 𝑚1 ∙ 𝜔
2 ∙  𝑟1 ;  𝐹2 = 𝑚2 ∙ 𝜔

2 ∙  𝑟2;  𝐹3 = 𝑚3 ∙ 𝜔
2 ∙  𝑟3 

These are vector quantities and we can add them up to fine resultant for. 

 
If the system was balanced, there would be no resultant force so the force 

needed to balance the system must be equal and opposite of the resultant (the 

vector that closes the polygon). The balancing mass M4 is then added at a suitable 

radius and angle such that the product m r is correct. 
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The result obtained would be the same whatever the value of ω and when ω = 

0 we have static balance. In order to make the solution easier, we may make ω = 

1 and calculate m r for each vector. This is called the m r polygon or vector   

Note that angles will be given in normal mathematical terms with anticlockwise 

begin positive from the x axis as shown. 

 

Example 1 

Three masses A. B and C are placed on a balanced disc as shown at the figure 

below, radii of 120 mm. 100 mm and 80 mm respectively. The masses are 1 kg. 

0.5 kg and 0.7 kg respectively. Find the 4th mass which should be added at a radius 

of 60 mm in order to statically balance the system Analytical Solution and 

Graphically 

solution . 

1)Analytical Solution: 

A more accurate approach to solving the vector diagrams in the preceding work 

is to resolve each vector into vertical and horizontal components. The resultant 
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vector is then found by adding these components. Consider worked example 

above again. 

 

 
Each vector has a component in the x direction given by: 

𝑚 ∙ 𝑟 cos 𝜃  

and in the y direction given by: 

𝑚 ∙ 𝑟 𝑠𝑖𝑛 𝜃. 

Work out these for each vector and include in the table. 

 

 

No. 
Mass 

[Kg] 

Radius 

[mm] 

θ0 Mr cos θ 

Kg mm 

Mr sin θ 

Kg mm 

A 1 120 0 120 0 

B 0.5 100 30 43.3 25 

C 0.7 80 130 -36 42.9 

totals 127.3 67.9 

The resultant vector has x and y component 127.3 Kg mm and 67.9 Kg mm 

respectively. This can be solved with Pythagoras. Resultant: 

𝑚 ∙ 𝑟 = √127.32 + 67.92 = 144.3 𝐾𝑔 ∙ 𝑚𝑚 𝑎𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 
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The mass required is 144/60=2.4 Kg.  

The angle ϕ=tang-1(67.9/127.3) =280 

The balancing force is 1800 anticlockwise of this so a balancing mass must be 

placed at angle of 2080. 

 

 
2)Graphically solution 

First draw up a table to calculate the value of mr for each mass: 

No. 
Mass 

[Kg] 

Radius 

[mm] 

Mr 

[Kg mm] 

A 1 120 120 

B 0.5 100 50 

C 0.7 80 56 

D mD 60 60 mD 

Draw the mr polygon to fine the value of mr for 4th mass 

The resultant 144.3 Kg m and is equal to 60 mD. the mass required: 

𝑚𝐷 ∙ 𝑟𝐷 = 144.3
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑚𝐷 =

144.3

𝑟𝐷
=
144.3

60
= 2.405 𝐾𝑔 

204° 𝑎𝑛𝑡𝑖𝑐𝑙𝑜𝑐ℎ𝑤𝑖𝑠𝑒 𝑜𝑓 𝐴 𝑎𝑠 𝑠ℎ𝑜𝑤𝑛   
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Example 2 

Four masses m1, m2, m3 and m4 are 200 kg, 300 kg, 240 kg and 260 kg 

respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 

0.3 m respectively and the angles between successive masses are 45°, 75° and 

135°. Find the position and magnitude of the balance mass required 

Graphically solution, if its radius of rotation is 0.2 m. 

Solution. 

Given : m1 = 200 kg ; m2 = 300 kg ; m3 = 240 kg ; m4 = 260 kg ; r1 = 0.2 m ; r2 = 

0.15 m ; r3 = 0.25 m ; r4 = 0.3 m ; θ1 = 0° ; θ2 = 45° ; θ3 = 45° + 75° = 120° ; θ4 

= 45° + 75°+ 135° = 255° ; r = 0.2 m. 

Find the position and magnitude of the balance mass required, if its radius of 

rotation is 0.2 m. 

Let m = Balancing mass, and θ = The angle which the balancing mass makes 

with m1 

1- draw the space diagram showing the positions of all the given masses as 

shown in Figure below: 

 

2- Tabulate the data as shown in Table below. The planes are tabulated in the 

same order in which they occur, reading from left to right. 

No. 
Mass 

[Kg] 

Radius (r) 

[m] 

mr 

[Kg m] 

m1 200 0.2 40 

m2 300 0.15 45 

m3 240 0.25 60 

m4 260 0.3 78 

m m 0.2 0.2m 
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3- Now draw the vector diagram with the above values, to some suitable scale, 

as shown in Figure below. 

 

4- The closing side of the polygon ae represents the resultant force. By 

measurement, we find that ae = 23 kg-m. 

5- The balancing force is equal to the resultant force, but opposite in direction 

as shown in figure of mr diagram. Since the balancing force is proportional to 

m.r, therefore: 

0.2 ∙ 𝑚 = 𝑎𝑒 = 23𝐾𝑔𝑚
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑚 = 115 𝐾𝑔 

By measurement we also find that the angle of inclination of the balancing mass 

(m) from the horizontal mass of 200 kg: 

𝜃 = 201° 

4.4 Masses not in the same plane 

Consider 2 masses statically balanced as shown but acting at different places 

along the axis. 

mr polygon 

mr polygon 
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For static balance: 

𝑚𝐴𝑟𝐴 = 𝑚𝐵𝑟𝐵 

It is clear that even with static balance, centrifugal force will produce a turning 

moment about the center of gravity for the system. In this simple case, the problem is 

solved by adding equal and opposite forces at the two points as shown. 

 
Consider the turning moment due to a single mass 

 

The centrifugal force produced is: 

𝐹 = 𝑚 ∙ 𝑟 ∙ 𝜔2 

The turning moment about the reference plane: 
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𝑇 𝑀 = 𝐹 ∙ 𝑥 = 𝑚 ∙ 𝑟 ∙ 𝜔2 ∙ 𝑥 

For dynamic and static balance, we must work out the resultant turning moment 

and add masses at appropriate points to cancel it out. The appropriate points will 

be on two planes not coplanar with any of the original masses. This involves 

drawing two vector diagrams and since ω is common to all vectors we can a again 

take co =1 and draw vectors representing Mr and Mrx. Then calculate the required 

masses and angles. 

Example3  

Find the mass and the angle at which it should be positioned in planes A and 

D at radius of 60 mm in order to product complete balance of the system shown. 

 
rB=75 mm; rC= 50 mm; mB=5 Kg; mC=2 Kg 

SOLUTION 

Note that the diagram has been drawn with B vertical. It is a good idea to 

always start by making one of the known masses horizontal or vertical to make 

the construction of the vector diagrams easier. All angles should be expressed in 

absolute terms. 

Plane A is the reference plane. All values of x are measured from plane A thus 

making mrx for A equal to zero. It follows that it does not appear in the vector 

diagram. Make up a table as follows leaving unknowns as symbols. 

 

No. 
m 

[Kg] 

r 

[mm] 

mr 

[Kg mm] 

x 

[mm] 

mrx 

[Kg mm2] 

A mA 60 60 mA 0 0 

B 5 75 375 200 75000 

C 2 50 100 300 30000 

D mD 60 60 mD 375 22500 mD 
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Now draw a polygon of mrx vectors in order to find the value of mrx at D. 

Start with B in this case because it is vertical  

Scaling the vector D which closes the tringle we find  

𝑚 ∙ 𝑟 ∙ 𝑥 𝑓𝑜𝑟 𝐷 = 22500 𝑚𝐷 

 𝑚𝑟𝑥 𝑓𝑜𝑟 𝐷 = 94000 = 22500 ∙ 𝑚𝐷
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑚𝐷 =

94000

22500
≈ 4 ∙ 17 𝐾𝑔; 𝑎𝑛𝑑 𝑖𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑑 254° 

Now we calculate mr for D: 

𝑚𝑟 𝑓𝑜𝑟 𝐷 = 4.17 ∙ 60 = 250.68 

 

Next, we draw the polygon for the mr values as shown: 

The vector which closed the polygon represents mr for A, mr for A=195Kgm 

60 𝑚𝐴 = 195𝐾𝑔𝑚
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑚𝐴 =

195

60
= 3.25𝐾𝑔 𝑎𝑡 6° 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 

The answer is best shown with an end view: 
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Example 4 

A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg 

and 200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm 

in planes measured from A at 300 mm, 400 mm and 700 mm. The angles between 

the cranks measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. 

The balancing masses are to be placed in planes X and Y. The distance between 

the planes A and X is 100 mm, between X and Y is 400 mm and between Y and D 

is 200 mm. If the balancing masses revolve at a radius of 100 mm, find their 

magnitudes and angular positions. 

Solution. 

 Given: mA = 200 kg ; mB = 300 kg ; mC = 400 kg ; mD = 200 kg ; rA = 80 mm 

= 0.08m ; rB = 70 mm = 0.07 m ; rC = 60 mm = 0.06 m ; rD = 80 mm = 0.08 m ; 

rX = rY = 100 mm = 0.1 m. 

Let 

 mX = Balancing mass placed in plane X, and mY = Balancing mass placed in plane 

Y. 

The position of planes and angular position of the masses (assuming the mass A 

as horizontal) are shown in Figure (a) and (b) respectively. 
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Assume the plane X as the reference plane (R.P.). The distances of the planes to 

the right of plane X are taken as + ve while the distances of the planes to the left 

of plane X are taken as – ve. The data may be tabulated as shown in Table 

below: 

Plane. 
m 

[Kg] 

r 

[mm] 

mr 

[Kg mm] 

x 

[m] 

mrx 

[Kg m2] 

A 200 0.08 16 -0.1 -1.6 

X (r.p) mx 0.1 0.1 mx 0 0 

B 300 0.07 21 0.2 4.2 

C 400 0.06 24 0.3 7.2 

Y mY 0.1 0.1 mY 0.4 0.04 mY 

D 200 0.08 16 0.6 9.6 

The balancing masses mX and mY and their angular positions may be determined 

graphically as discussed below: 

1- draw the mrx diagram (couple polygon) from the data given in table above 

(column 6) as 

shown in Figure (c) to some suitable scale: 

 
mrx diagram 

2- The vector d′o′ represents the balanced couple. Since the balanced couple is 

proportional to 0.04 mY, therefore by measurement: 

0.04 ∙ 𝑚𝑌 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑑
′𝑜′ = 7.3 𝐾𝑔𝑚2

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑚𝑌 =

7.3 𝐾𝑔𝑚2

0.04
= 182.5 𝐾𝑔 
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3- The angular position of the mass mY is obtained by drawing OmY in Figure 

(b), parallel to vector d′o′ . By measurement, the angular position of mY is θY = 

12° in the clockwise direction from mass mA (i.e. 200 kg ). 

4- Now draw the mr diagram (force polygon) from the data given in Table a 

(column 4) as shown in Figure(d).  

 
mr diagram 

5- The vector eo represents the balanced force. Since the balanced force is 

proportional to 0.1 mX, therefore by measurement: 

0.1 ∙  𝑚𝑋 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝒆𝒐 = 35.5 𝑘𝑔𝑚
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑚𝑋 =

35.5 𝑘𝑔𝑚

0.1𝑚
= 355𝐾𝑔 

The angular position of the mass mX is obtained by drawing OmX in Figute. (b), 

parallel to vector eo. By measurement, the angular position of mX is θX = 145° 

in the clockwise direction from mass mA (i.e. 200 kg ). 

4.5. Balance of Reciprocating Machines  

Reciprocating machines here means a piston reciprocating in a cylinder and 

connected to a crank shaft by a connecting rod. You can skip the derivation of the 

acceleration by going to the next page-First let s establish the relationship 

between crank angle, and the displacement, velocity and acceleration of the 

piston. 

 Crank Connecting 
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4.6 Forces 

The internal combustion engines convert the linear motion of the pistons to the 

rotational motion of crankshaft. This attributes to the primary and secondary 

forces in an engine. A single cylinder four-stroke engine completes two rotations 

of crankshaft per power stroke and hence each cycle is given an angle of 180 

degrees. 

4.6.1 Primary forces- When a piston passes through TDC and BDC, the change 

of direction produces an inertia force due to which the piston tends to move in the 

direction in which it was moving before the change. This force, called the primary 

force, increases with the rise of the engine speed, and unless counteracted 

produces a severe oscillation in the vertical plane.  

4.6.2 Secondary forces 

In every cycle of 180 degree, the piston either moves from top to bottom or 

reverse. The distance travelled by the piston is not uniform and this give rise to 

the secondary forces. Secondary forces occur twice every half rotation and hence 

the name.  

You could see that the distance moved by the piston by completing 90 degrees 

a little over the half stroke. Since piston is connected to the crankshaft and it 

rotates with uniform speed, the piston travels faster in first 90 degrees and slow 

in other half. The reverse happens while travelling from bottom to top. 
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Reciprocation forces 

Using the close approximation fore acceleration, the inertial force required to 

accelerate the piston is given by: 

𝑎 = 𝜔2 ∙ 𝑅[𝑐𝑜𝑠 𝜃 +
cos(2 ∙ 𝜃)

𝑛
] 

This may be thought of as two separate forces: 

𝐹𝑝 = 𝑚 ∙ 𝜔
2 ∙ 𝑅 ∙ 𝑐𝑜𝑠𝜃 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑓𝑜𝑟𝑐𝑒𝑠 

𝐹𝑠 = 𝑚 ∙ 𝜔
2 ∙ 𝑅 [

𝑐𝑜𝑠(2 ∙ 𝜃)

𝑛
 ] 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑠𝑒𝑜𝑛𝑑𝑎𝑟𝑦 𝑓𝑜𝑟𝑐𝑒 
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4.7 Primary force for a single cylinder 

The primary force: 

𝐹𝑝 = 𝑚 ∙ 𝜔
2 ∙ 𝑅 ∙ 𝑐𝑜𝑠𝜃  

Must be thought of as a force with peak value mω2R that varies cosinusoidally 

with angle θ. m is mass of piston; R is crank radius. So, the primary force (Fp) is 

maximum when θ=0 or 1800. 

Example 5 

Determine the primary out of balance force for a single cylinder machine with 

a piston of mass 0.5 kg, with a connecting rod 120 mm long and a crank radius 

of 50 mm when the speed of rotation is 3000 rev/mm. 

Solution: 

𝜔 =
2 ∙ 𝜋 ∙ 𝑛

60
=
2 ∙ 𝜋 ∙ 300

60
= 100 ∙ 𝜋 

𝐹𝑝 = 𝑚 ∙ 𝜔
2 ∙ 𝑅 ∙ 𝑐𝑜𝑠𝜃 = 0.5 ∙ (100 ∙ 𝜋)2 cos 𝜃 = 2467.4 ∙ 𝑐𝑜𝑠𝜃 𝑁 

4.8 Secondary force for a single cylinder 

The secondary force  

𝐹𝑠 = 𝑚 ∙ 𝜔
2 ∙ 𝑅 [

𝑐𝑜𝑠(2 ∙ 𝜃)

𝑛
 ] 

must be thought of as a force with peak value mω2R/n what varies consensually 

with double angle 2θ. So, the primary force (Fs) is maximum when θ=00 ,900 1800 

and 3600. 

Example 6 

Determine the secondary of balance force for a single cylinder machine with a 

piston of mass 0.5 kg, with a connecting rod 120 mm long and a crank radius of 

50 mm when the speed of rotation is 3000 rev/mm. 

Solution: 

𝜔 =
2 ∙ 𝜋 ∙ 𝑛

60
=
2 ∙ 𝜋 ∙ 300

60
= 100 ∙ 𝜋; 𝑛 =

120

50
= 2.4 

𝐹𝑠 = 𝑚 ∙ 𝜔
2 ∙ 𝑅 [

𝑐𝑜𝑠(2 ∙ 𝜃)

𝑛
 ] = 0.5 ∙ (100 ∙ 𝜋)2 ∙

0.05

2.4
∙ 𝑐𝑜𝑠(2 ∙ 𝜃)

= 1028.1 ∙ cos(2 ∙ 𝜃) 

Note: The unbalance forces due to reciprocating mass (piston) varies in 

magnitude but constant in direction, while due to rotating masses is constant in 

magnitude but varies in direction.           64 
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4.9 Problem in reciprocating Balance: 

We know from the first balancing tutorial that in order to balance rotors we 

need to place balancing masses on two planes. Reciprocating machines can be 

balanced by placing two reciprocating masses on two planes. To balance primary 

components these would rotate at the crank speed. To balance secondary 

components, they would have to rotate at double the crank speed in order to 

produce double angles in a given period of time. The method so far used is easily 

adapted to solve the balance. We produce the mrx or mrx/n polygons and deduce 

the balancing component in the reference plane. Adding this component, we then 

draw the mr polygon to deduce the balancing component in the second reference 

plane. 

4.9.1 Example 7 

Two lines of reciprocating masses at A and B are to be balanced for PRIMARY 

forces and couples by two lines of reciprocating pistons at C and D. given mA = 

0.5 Kg and mB=0.75Kg and that crank B is rotated 700 relatives to A, determine 

masses mC and mD and the angle of their cranks. All crank radii are the same.   

Solution: 

 
Space diagram 

Make the D the reference plane 

No. 
Mass 

[Kg] 

r 

[m] 

x 

[m] 

mr 

[Kgm] 

Mrx 

[Kgm2] 

A 0.5 r 0.2 0.5r 0.1 r  

B 0.75 r 0.7 0.75r 0.525 r 

C mC r 1 mCr mCr 

D mD r 0 mDr 0 

Draw the mrx polygon with a suitable scale ratio and with a bit of 

trigonometry: 

mCr =0.567r; ϕ=29.60. the mass will be 0.567Kg placed on crank C at240.40 to 

crank A.  
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Now draw the mr polygon with: 

𝑚𝐶 ∙ 𝑟 = 0.567 ∙ 1, 𝑠𝑜 𝑚𝐶 = 0.567 

A bit more trigonometry or scaling from the diagram reveals that: 

𝐹 = 0.521 ∙ 𝑟; 𝑠𝑜 𝑚𝐷 = 0.521𝐾𝑔 𝑎𝑛𝑑 𝑖𝑡 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑝𝑙𝑎𝑐𝑒𝑑 𝑎𝑡 203.9° 𝑡𝑜 𝑟𝑎𝑛𝑘 𝐴. 

 

 

 

 

 


